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TURBULENT BOUNDARY LAYER OF AN INCOMPRESSIBLE
FLUID ON A POROUS WALL

By L. E. Kalikhman

ABSTRACT

An approximate solution is given of the problem of the turbulent
boundary layer of an incompressible flow on a porous wall. The thermal
flows that must be removed from the wall for maintaining its given level
of temperature and the temperature of the heat insulated porous surface
are considerably lowered with the increase in the intensity of the blow-
ing, particularly in utilizing the heat of vaporization. The tests
satisfactorily confirm the proposed simple theoretical formulas for
computing the resistances and heat transfers of a porous wall.
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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TURBULENT BOUNDARY LAYER OF AN INCOMPRESSIBLE
FLUID ON A POROUS WALL*
By L. E. Kalikhman

One of the effectlive methods of controlling the boundary layer is
through the suction or blowing of a liquid (gas) in the boundary layer.
This means may be taken, for example, with the object of decreasing the
surface friction, preventing separation of the flow, reducing the heat
transfer, or protecting the surface from high temperature.

The existing theoretical studies referring predominantly to the
laminar boundary layer on a porous wall are fundamentally systematized
in the monograph of Schlichting (ref. 1).

The inflow of fluid through a wall indicates the presence of a
normsl component of the velocity on the inner boundary of the boundary
layer and a decrease of the stability of the laminar sublayer near the
wall. Both these circumstances approximate the conditions in the bound-
ary layer on a porous wall to the conditions in the boundary layer of a
free stream.

We choose the x and y axes along and normal to the plate,
respectively; the origin of coordinates is on the leading edge of the
plate. The differential equations of the two-dimensional steady turbu-
lent boundary layer of an incompressible fluid then have the form

gﬁ + %% =0 (2)
pgcp(u§+vg—$>=g—; (3)

where
7= o1 @5)2 1 = pgept? 8 (4)

*Turbulentnyi pogranichnyi slol neszhimaemoi zhidkosti na poristoi
stenke. Zhurnal Tekh. Fiziki, vol. 25, no. 11, 1955, pp. 1957-1964.
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are the friction stress and the unit heat flow, respectively; u and v
are the projections of the velocity on the x and y axes, respectively;
p 1s the density of the flow; T 1is the temperature; c is the heat
capacity of unit weight; and 1 is the mixing length, which we shall

assume constant in a cross section.
The boundary conditions of the problem are

for y 0 u

]
1]

0 v=vy T =Ty

3 (5)

8 u=U0 S8 =0 T=Ty
oy

where U and Ty are the velocity and temperature of the flow outside

the boundary layer, respectively, and 8 1s the thickness of the layer.

for y

By introducing the stream function + by the equations

el el
u oy V= ox
we obtain
oy 3% 3w By _ 2 3% N (6)
dy dx dy Ox dy?2 dy2 dy>

By assuming that the velocity profiles in the different sections of the
boundary layer are similar, we set

¥ = Usf(q) 7 =% (7)

Substituting the values of the derivatives of the function ¥
in equation (1) and separating the variables give

14d%¢ 82 a
.1af 5 &b (8)

The left side of equation (7) depends only on 71, the right side only on
x% hence, they are each equal to a constant magnitude which we denote by
m

We obtain the two equations

3
f L wdr =0 (9)
dn3

52 a5 z

(10)
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. The solution of equation (9) has the form
m m
-m
£(q) = Cye L Cze-zu cos -? mn + C3e—2"-1 sin g mn (11)
»
The boundary conditions (4) give
e
£'(0) =0 £(0) =-—U§=£
. (12)
R fr- (1) =1 £(1) =0
s3]
We solve the problem for the case where the parameter & maintains
a constant value over the length of the plate. From the four conditions
in equations (12) we obtain o ~
--J:e 2 - 28 sinﬁm
Cq = m 3 2
1=73
% R 3 3
},?S e - cos m-Vgsinzm
‘ 'é m 3
| - = -=m
}e 2+€'e2 -cos-gm-—vlgsin-gm
m
cz = ; ~(13)
- s
e & -cos-gm-vgsingm
. m 3254
- 3e2+—§—-e2 +00sﬁm-ﬁsin.‘ﬁm
a ‘/3 2 2
3
R
2 3 3
e -cosIm-ngngCm
/
5 m
-2
1o % 4Zeos Yoy
£ = (14)
® bt
2 - -
e -emcos§m-ﬁemsin_ﬁm




The coefficient of friction will be

2t 2
cp = v z(l) £12(0) (15)
pU? 5
where
5 7% o R ' \3
- e 2iel-e T 4 cos o m - \/g sin o m
£7(0) = m? (16)

m
e - COSs Jég m - \/3 sin Jég m

In particuler for the plate without blowing (vo = 0) we obtain
Cp = 0.13091, Cp = -0.13091, Cz = 0.22673, m = 1.8498, f"(0) = 1.344.

As is known, in a turbulent layer for Re< 107

cpe = 0.0592 Re~0-2 <§e = Hzé) (17)
U

From equations (15) and (17) we obtain the nondimensional mixing
length 1/8 for vp = O and assume it to be independent of the blowing

i

Lo Re 0L (b = 0.129) (18)
From equations (10) and (18) we have
B _ 22p3Re 02 (19)
dx

Integrating equation (19) by making use of the initial condition & = O
for x =0 gives

2 SRe-O.Z

8 = 2.5 b“m x (20)

From the definition of &, if account is taken of equation (19), this
relation follows:

Yo . 0.2

Re = -2b2m3£ (21)

Thus, the condition of the constancy of & along the plate is
'
equivalent to the condition T? Re0:2 _ const., that is, the blowing

velocity varies in our solution as Re-0-2,
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The parameter & expresses the ratio of the amount of fluid blown
through a plate of length x to the amount of the original fluid flowing
with velocity U through a section of the boundary layer:

[
A\
o 0

&= - T (22)

v
The combination 7? Reo'2 is the fundamental parameter charscter-
izing the intensity of the boundary-layer blowing. The dependence of the
original discharge & on the intensity of the blowing is represented in
figure 1. The change of thickness of the boundary layer & as a function

v
of 7? Reo'2 is shown in figure 2.
The velocity profile will be
u _4f V0 5.0.2
- = — ; — Re 23

The following magnitude was chosen as an independent variable in
the construction of the velocity profiles (fig. 3):

J ReC-2 = 2.5 b2mdy
X

The local and mean coefficient of friction on the basis of equations
(15) and (18) will be

cp = 2b2r"2(0)Re™0°2 {2¢)
Co =2 | codx = 2.5 b2r"2(0)Re=0+2 (2]
f =3 f
0
Yo . 0.2
Figure 4 shows the dependence on — Re”* of the ratio of the

U
coefficient of friction with blowing to its value without blowing. The
reduction of the friction surface with blowing is explained by the in-
crease in the thickness of the boundary layer and the corresponding de-
crease in the velocity gradient at the wall. The results of the compu-
tation of the dynamic magnitudes are collected in the table.

From equations (1), (3), and (4) it follows that the velocity pro-
files and temperature drops are similar:

T-T,

1
T -T, U

(26)



quation {26) with respect to y and setting

gep(Tp - Ty)
w = p kil Tw (27)
U
whence
Nu = ber"2(0)Re®-8 (28)
Nup = 1.25 b2f"2(0)Re0-8 (29)
where
X
QX
TR, SN S
(Ty - T A (Ty - T x 70
Hence (fig. 4),
Nu - Cr _ f"2(0) (30)
Nu (o] ll2 ’
VO=O fVO:O fVO=O(O)

Let us determine the difference between the total amount of neat
passing through unit surface in unit time (i.e., carried sway Iiom tho
hot stream) and the heat in the heating and possible v . z~ti- :
the blown fluid. This excess heat which is required to be ron-
from the walls will be

T - m
Q) =aq, - [chO(TO TO) + rpong]

where G = pgvpg = POVHE is the weight discharge of tue hiowin: | v
pg and Tg are the density and temperature at the exi: frow th:s wall
respectively; ph and T} are its density and temperscure in the

reservoir, respectively, that is, at the entrance to the wall; and =
and cpo are the latent heat of vaporization and the capacity per unit

welght of the blown fluid, respectively.

By assuming pg =p and Tp X T, we obtain

‘OcB 0.8 C .') m - m! vy
Nu'Re = NuRe - _Po (XQ Reo 4) Ty -To+r (52)
°p \U 1-T,
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where
Q. a
Nut o ;M Ll = p2e"2(0)
x(Tb - T, x(Tb - T)
T T
Tw= TE T} ='"9 T = S
b b chTb

Figure 5 shows an example of the computation of the excess_thermal
flows without vaporization for r =0, ¢ /c =1, Ty =0.288, T, = 0.3

Po/ °p 28.%
and 0.5 (curve a) and with vaporization for T = —22°9 = 112,
cP 0.48 * 1000
—0 _0:48 % _0.288, and T, = 0.3 and 0.5 ( b). It is of
ey = 0.oa = 2 T =0-28, an ;= 0.3 an .5 (curve b). s 0

interest to remark that in the presence of vaporization very small rela-
tive discharges are already sufficient for maintaining & given tempera-
ture at the wall. In the case of the thermal insulation of the surface
no heat from the wall is conducted away (q& = 0). The amount of heat

carried away from the stream then goes entirely for heating (and possibly
vaporizing) the blown fluid. .

From equation (32) with Nu' = 0 we obtain

bf" 2(0) +-¢—Q(U R02>(O_F)

0.2

(33)

p2e"Z(0) + —2 “P0 ¥0 g,
Cp U
Figure 6 presents an example of the computation of TW without

vaporization (curve a) and with vaporization (curve b) of water for
Ty = 288 and Ty = 1000° K. We see that the injection in the boundary
layer even without vaporization considerably lowers the temperature of
the heat insulated surface.

The temperature of the heat insulated surface and the approximate
magnitude of the thermal flows were experimentally determined in reference
2. The tests were conducted by the 1nject10n of air in a round tube of
diameter 4 = 76.2 millimeters, Ty = 700° - 1000° K, TH = 294° K. The
Reynolds number of the flow was Reg = vpdp/p = 25,000/215,000, the

discharge G = 0.55 - 0.058 kg/M? sec. There vere measured Ty, Ty, Td,
G. In working up the experimental data we assumed that they refer
essentially to a part of the tube, that is, we assumed & = d/2. By

\'A
assuming arbitrarily several values of O Re0:2 we find for gliven

Reg successively: the mean velocity in the tube by the formula

YN



the parameter

VO 0.25 0.25 Vo 0.2 Ud Re(d
T Ry = (2.5 bZm3) T Re Ry = _u—p" = I(J.m) (35)
2
U
the discharge
2 0.75 (v 0.25
o - 2 5" (2 1) (36)

Thus, the results of the tests may be represented as a function of
v
7? Reo‘2 as in figure 6. We see that the agreement of the theoretical
curve (without vaporization) with the experimental is entirely satis-
factory.l The unit flow of heat g, through the surface for a steady

conducting of the test may be determined from the change of the enthalpy
of the injected air

T, - T}

qw = GC O O)

ol
The temperature Ty was not measured in the test. By varying
approximately Tg through T, we evidently obtain somewhat higher
values of q., since actually an underheating of the injected air is
possible within the wall with consequent underheating of this air in the
mixture with the hot flow. The results of this evaluation of the test

data are given in figure 4 which shows that the character of the theoreti-
cal dependence is essentially confirmed.

CONCLUSIONS

An approximate solution is given of the problem of the turbulent
boundary layer of an incompressible flow on a porous wall. It is shown
that the fundamental parameter defining the process is the intensity of

v
the injection —O ReC*2  connected with the relative discharge &. With
increase in %9 Re¥*2 the thickness of the boundary leyer increases, the

velocity profiles become less full, and the frictional resistances of the
plate decrease. The thermal flows that must be removed from the wall for
meintaining its given level of temperature and the temperature of the heat

1The experimental data were also worked on the assumption that the
thickness of the boundary layer at the start of the test portion was equal
to zero. The results practically did not change.
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insulated porous surface are considerably lowered with the increase in
the intensity of the blowing, particularly in utilizing the heat of
vaporization. The tests satisfactorily confirm the proposed simple
theoretical formulas for computing the resistances and heat transfers of
a porous wall.
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Figure 1l.- Dependence of original
discharge é on intensity of

blowing.
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Figure 3.- Velocity profiles for different
blowing intensities.
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Figure 2.- Change of thickness of
boundary layer & as function of
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vy oo=0 ct
m £ —U— Re0'2 3 Ct vy = C, C, Cs 17 (0)
1.8498 0 0 1 1 0.13091| —0.13091 ; 0.22673 | 1.34
1.87 {—0.0086 | 0.00185 | 1.033 | 0.97 0.1234 | —0.13202 | 021871 | 1.32
189 |—0.0167 | 0.00370 | 1.067 | 0.94 0.11625[ —0.13295 | 0.21099 | 1.30
20 —0.054 | 0.0142 1.26 0.79 0.08158| —0.13567 | 0.17253 | 1.20
21 —0.07964| 0.0242 1.46 0.65 0.05571| —0.13535 | 0.14248 | 1.09
2.2 —0.098 | 0.0345 1.68 0.53 0.03451| —0.13303 | 0.11665 | 0.98
25 —0.128 | 0.0658 241 0.215 | —0.00954) —0.11874 | 0.05754 | 0.62
2.6 —0.132 | 0.0761 2.18 0.14 —0.01925| —0.11251 | 0.04273 | 0.50
2.1 —0.133 | 0.086 3,11 0079 [ -—0,02703 —0.10591 | 0.02994 | 0.38
28 —0.132 | 0.095 3.47 0.036 |--0,03319 —0.09906 | 0.01887 | 0.26
29 —0.130 | 0.104 3.85 0.010 | —0,03796 —0.09206 | 0.009317| 0.13
30 —0.126 | 0.1123 4.26 0.00026 | —0.04137] —0.085176 | 0.001402 | 0.022
hald Cr
M‘vfo 'vo-o
1.01z0
2 o, o
o
O 120,000 g <
© 150,000
X 25,000
st O 60,000
® 215,000
4+ 155,000
® 70,000
® 150,000
0 195,000
® 35,000
© 65,000
0 on ' 02 ' 03 ‘
Figure 4. - Resistance and heat transfer of a plane as function

of blowing intensity.
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Figure 5. - Excess heat that must be removed from wall.

Vo

T
Figure 6. - Relative temperature of surface
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as function of intensity.




